editing disabled

The temperaments listed are 16edo-distinct, meaning that they are all different even if tuned in 16edo. The ordering is by increasing complexity of 3. The temperament of lowest TE complexity was chosen as the representative for each class of edo-distinctness.

5-limit temperaments

Period generator
Wedgie
Name
Complexity
Commas
16 7
<<1 -3 -7]]
Mavila
1.377
135/128
8 1
<<2 10 11]]

3.113
59049/51200
16 3
<<3 7 4]]
Laconic
2.149
2187/2000
4 1
<<4 4 -3]]
Diminished
1.826
648/625
16 5
<<5 1 -10]]
Magic
2.417
3125/3072
8 3
<<6 -2 -17]]

3.484
140625/131072
16 1
<<7 11 1]]

3.743
177147/156250
2 1
<<8 -8 -31]]

6.008
2562890625/2147483648

7-limit temperaments

Period generator
Wedgie
Name
Complexity
Commas
16 7
<<1 -3 5 -7 5 20]]
Armodue
1.804
36/35 135/128
8 1
<<2 -6 -6 -14 -15 3]]
Bipelog
2.546
50/49 135/128
16 3
<<3 7 -1 4 -10 -22]]
Gorgo
2.252
36/35 1029/1024
4 1
<<4 4 4 -3 -5 -2]]
Diminished
1.494
36/35 50/49
16 5
<<5 1 9 -10 0 18]]

2.430
36/35 1875/1792
8 3
<<6 -2 -2 -17 -20 1]]
Lemba
3.086
50/49 525/512
16 1
<<7 11 3 1 -15 -24]]

3.369
36/35 51200/50421
2 1
<<8 8 -8 -6 -35 -41]]

4.993
648/625 1323/1280

11-limit temperaments

Period generator
Wedgie
Name
Complexity
Commas
16 7
<<1 -3 5 -1 -7 5 -5 20 8 -20]]
Armodue
1.603
33/32 36/35 45/44
8 1
<<2 -6 -6 -2 -14 -15 -10 3 16 15]]
Bipelog
2.211
33/32 45/44 50/49
16 3
<<3 7 -1 -3 4 -10 -15 -22 -31 -5]]

2.320
33/32 36/35 352/343
4 1
<<4 4 4 12 -3 -5 5 -2 14 20]]
Demolished
1.831
36/35 45/44 50/49
16 5
<<5 1 9 11 -10 0 0 18 22 0]]

2.303
36/35 45/44 363/343
8 3
<<6 -2 -2 -6 -17 -20 -30 1 -7 -10]]

3.032
50/49 176/175 363/343
16 1
<<7 11 3 9 1 -15 -10 -24 -17 15]]
Slurpee
2.916
36/35 121/120 352/343
2 1
<<8 8 8 8 -6 -10 -15 -4 -9 -5]]

2.606
36/35 50/49 363/343

13-limit temperaments

Period generator
Wedgie
Name
Complexity
Commas
16 7
<<1 -3 5 -1 3 -7 5 -5 1 20 8 18 -20 -10 14]]
Armodue
1.481
27/26 33/32 36/35 45/44
8 1
<<2 -6 -6 -2 -10 -14 -15 -10 -23 3 16 -1 15 -6 -27]]

2.256
33/32 45/44 50/49 78/77
16 3
<<3 7 -1 -3 9 4 -10 -15 3 -22 -31 -5 -5 29 42]]

2.293
27/26 36/35 143/140 275/273
4 1
<<4 4 4 12 12 -3 -5 5 4 -2 14 13 20 19 -3]]

1.829
27/26 36/35 45/44 50/49
16 5
<<5 1 9 11 15 -10 0 0 5 18 22 31 0 9 11]]

2.376
27/26 36/35 78/77 605/588
8 3
<<6 -2 -2 -6 2 -17 -20 -30 -19 1 -7 12 -10 13 29]]

2.725
33/32 50/49 66/65 105/104
16 1
<<7 11 3 9 5 1 -15 -10 -18 -24 -17 -29 15 3 -16]]
Slurpee
2.700
36/35 66/65 143/140 352/343
2 1
<<8 8 8 8 8 -6 -10 -15 -17 -4 -9 -11 -5 -7 -2]]

2.354
36/35 50/49 66/65 143/140